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1. The nonlinear equality problem

In this paper we derive new quasi-Newton updates for the nonlinear equality
constrained problem

(NEP) minimize f(x)

subject to c¢(x)=0,

where xeR", f:R" >R and ¢:R" >R’ and ¢ < n. The functions fand ¢;,i=1,...,1,
are twice continuously differentiable. The new updates satisfy a quasi-Newton
equation, maintain positive definiteness on the null space of the matrix of active
gradients, and satisfy a minimum change condition. Furthermore, the application
of the new updates is not restricted to a small neighborhood near the solution. To
further motivate the development of our updates we first review optimality conditions
and some existing update strategies.
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and by the US Army Research Office through the Mathematical Sciences Institute, Cornell University.
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It will be useful to define AeR"™' as the matrix whose columns are the gradients
of the constraints. In other words, A(x) =[V¢,(x), ..., V¢, (x)]. If Ais of full column
rank, we can define two matrices Y e R™" and Z e R"*"~" using the QR factorization

A=QR=[Y Z][ﬂ

where Q=[Y Z] is orthogonal, R"=[R" 0], and ReR"*' is upper triangular.
When defined this way, Y and Z have orthonormal columns and satisfy the following
relationships: QQ =YY '+ ZZ"=1,.,.,.Y'Y=1,,,Z"Z =1, Y'Z=0,xm,and
Z"Y =0,,., where we have taken m=n—t. Thus, Y and Z represent orthogonal
bases for the range of A and the null space of A", respectively.

The solution to (NEP) must satisfy the first order necessary condition for
optimality:

First order necessary condition. If x* is a local minimizer of (NEP), Z is defined
as above, and a constraint qualification (e.g. A(x) has full column rank) holds at
x* then x™ satisfies

Z(x*)"V, fix*)=0, c(x*)=0. (1.1)
We may restate this in terms of the Lagrangian
L(x’ A) =f(x) - Z Aici(x)a
i=1

with A €R'. The first order necessary conditions for optimality then requires the
existence of Lagrange multipliers A * such that x* and A* satisfy

V. L(x*, A*)) _ (g(x*)—A(x*)A(x*)) 0
VAL(x* A*¥)) c(x™) =)
where d; e R""' and we have defined g=V, .fand AA =Y AV c,.

In the remainder of this paper we will also assume that the solution (x*, A¥)
satisfies the second order sufficiency condition. Specifically we assume:

® fand ¢;,i=1,...,t are twice continuously differentiable.

® V¢i(x*),i=1,...,t are linearly independent.

® Z(x*)'V,. L(x*, A*)Z(x*) is positive definite where V,, L(x, A) is the second
derivative, or Hessian matrix, of the Lagrangian.

Note that although many authors make the strong assumption that the full Hessian
at (x* A*) is positive definite, we assume that only the reduced Hessian matrix,
Z(x*)"V o L(x* A*)Z(x*), is positive definite as required by the second order
condition.

d,(x*, A*)i( (1.2)

1.1. Iterative methods for NEP - the nonlinear equations view

Let us first consider the solution of (NEP), emphasizing the matrices we wish to
approximate in a quasi-Newton approach. Most methods designed to solve (NEP)
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strive for a point x* and a set of multipliers A* such that equations (1.2) hold.
Consider the kth step of a Newton iteration, obtained by solving

p Sk _ V. di(x, )\)T Sk _
4% )\k)(’}’k) - [V)\ di(x, )\)T]('Yk> = A5 M),

where s, = X, — Xx and vy, = A4, — A, Dropping the subscript k, using the subscript
+ for k+ 1, and the definition of d,(x,, A,) we write the Newton iteration as

VxxL(xaA) _A(x) S _ g
e )= 12

If A is of full column rank and V., L(x, A) is positive definite in the null-space of
AT then there exists a unique solution of system (1.3). Defining the orthogonal
matrix Q‘ER(n-H)x(n—H)’

O;[Y z 0]
B O 0 IIXI ’

the solution to (1.3) may be rewritten by multiplying both sides by Q" and inserting
QQ'=1,

| Ve L, A) —AX) | =~1( S =8
Q[ AT 0 ]QQ (m)“ Q (c>

Dropping the arguments x and A and carrying out the multiplication by Q we have

Y'™WV2LY Y'V’LZ -R]|/Ys Y'g
ZWALYy Z'WVWLzZ 0 || Z's|=-|Z"g (1.4)
RT 0 0 A c

where the shorthand V>L denotes the Hessian V., L(x, A). This system is written
using the four matrices Y'V’LY, Y'V?LZ, Z"V’LY and Z'V’LZ which we refer
to as reduced or projected Hessian matrices. Together, the four blocks will be
referred to as the partitioned Hessian matrix, and we call system (1.4) the partitioned
or transformed Newton system. Since this system is in block triangular form, we
can immediately write down its solution. Defining

sy=Y's, 8r= YTg, sz=2Z"s, 8z= ZTg,

we have the Newton step
s=Ysy+Zsy, sy=—R "¢, s,=—(Z"V’LZ) (g, +Z"V’LYsy),
A.=R ' (gy+Y'V’LYsy + Y'V’LZs;). (1.5)

Note that we obtain the full step s as the sum of two orthogonal components v = Yy
and h = Zs,. Since Zs; lies in the null space of the constraints, the horizontal step
h tends to decrease Z'g while moving tangent to the constraint contour. Similarly,

since Ysy lies in the range space of the constraints, the vertical step v tends to
reduce the constraint values.
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Using equations (1.5), the Newton algorithm for (NEP) can be defined as follows:

Newton algorithm.
Initialize:

k<0.

Choose xg, Ag.

Do while (|22 > &qop or [lcicl| > £qiop)
Evaluate f, g, V°Ly, ¢k, Ay.
Factor A, =[Y, Z, ][R} 0"]".
SOLVE (1.5) for s¥%, s%, and A,.,.
Xpa1 < X+ U+ by = X, + Ysh + Zsk
k<k+1.

End

Noting that system (1.3) can also be derived as a step in a Sequential Quadratic
Programming (SQP) algorithm, we will refer to (x4, — X, Ax+; — Ax) as an SQP step.
In the remainder of this paper we restrict our attention to quasi-Newton

methods for (NEP). By approximating the transformed second derivative matrix
[Y Z]'"V2L[Y Z],

[BYY BYZ] [YTVZLY YTVZLZ]

Bzy Bzz Z'WVLY Z'V’LZ (1.6)

and substituting our approximation into (1.4) and (1.5) we obtain the quasi-Newton
SQP step

s=Ysy+Zsz, SY:*R*TC, SZZ_BEIZ(gZ'*‘BZYSY),
/\+=AQP“_‘R_l(gY+BYYSY+BYZSZ)- (1.7)

In the next section we discuss current quasi-Newton methods for (NEP), and
show that they all lack certain desirable features. We remedy these deficiencies in
Section 3 by deriving two new quasi-Newton updates with very desirable properties.
In Section 4 we analyze the formulas derived for the two new updates. Finally, we
present the results of our extensive computational experience with the two new
updates in Section 5.

2. Current quasi-Newton methods for the nonlinear equality problem

Since quasi-Newton methods for (NEP) are quite complex, space does not permit
a full discussion. Greater detail may be found in Fenyes (1987). Here, we concentrate
on a major deficiency of current quasi-Newton methods for the constrained prob-
lem — simple, reliable methods for keeping the null-space Hessian approximation
positive definite, particularly when far from the solution. In unconstrained methods,
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positivity of the Hessian approximation insures that the quasi-Newton step s=
—B7'g will be a descent direction for the objective function at each iteration. In
constrained methods, keeping at least B, positive definite is generally accepted to
be desirable. Here, we prove that when B is a positive definite approximation to
Z'V?LZ, the quasi-Newton SQP step (1.7) yields a well defined descent direction
for the augmented Lagrangian merit function

L.(x, A, 0)=f(x)—c(x)"A +30¢c(x)Te(x).

We examine two choices for the Lagrange multipliers in the definition of L,: A =A<
where A9F is given above, and A =A"™® where A" solves

min [l — AA |3,
By definition, the SQP step will be a descent direction for L, if —s"VL,> 0. Note

that we use the simplified notation VL, to mean V,L,(x, A, o) with A and o held
constant. Since s = Ysy + Zs; and QQ" = I, we may write s' VL, as

sTQQ'VL,=s"(YY"™+ZZ")WL,=syY'VL,+s;Z"VL,.
Using A= YR and the properties of L,, Y, and Z yields
s'VL,=syY"(g—Ar)+syoRc+s5g,. (2.1)

Substituting ¢, g and A°" from equations (1.7) into (2.1) and letting LY" =
L.(x,A?F, 0), we have

_STVLSP = S;Byysy + SI‘/BYZsZ + S1Z-BZYSY + S-IZ-BZZSZ + O'S-l}-/RRTSy. (2.2)
Or, using A" and letting Ly>=L,(x, A%, o) we get
—s'"VIY=5,B,;5,+55Byysy +0s v RR sy. (2.3)
To establish the sign of these quantities we use a result from Debreu (1952).
Lemma 2.1. Define CER"™', WeR"*", zeR". Then, z' Wz >0 for every z # 0 such

that C"z=0 if and only if there exists a number & such that z"Wz+az"CC z>0
forallz#0 and a>a. [

Applying this result, we prove the following theorem.

Theorem 2.2. Suppose sy and s; are given by (1.7) and x # x*. If s; #0, R is full
rank, and Bz is positive definite, then there exists a & such that the SQP step
s = Ysy + Zs is a descent direction for L,(x, A, o) for either A?¥ or A" and all o> &.
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Proof. We will show —s"VL2" and —s"VLL® given by (2.2) and (2.3) are positive
by applying Lemma 2.1. First choose z"=(s%, s7) and set CT=[R" 0],

[Byy By,

for (2.2),
BZY BZZ] ( )

zZY zZZ

Since Bz is positive definite and R has full rank we can assume sy and s, from
(1.7) are well defined and of finite norm. In addition, C"z =0 for z # 0 if and only
if sy =0 since R is of full rank. Thus, for all s, #0 and z"=(0", sL), we have
C"'2=0and z"Wz=s5,B,,s, >0 since B is positive definite. We conclude from
Lemma 2.1 that there exists a & such that —s"VL,(x, A, ¢)>0 for A%® or A"S and
all c>a. O

The modified SQP x-step
s=Ysy+Zs;, sy=—R "¢, s,=—BzLg,, (2.4)

used in many of the projected quasi-Newton methods discussed below, may also
be shown to be a descent direction for L, when B is positive definite. In addition,
a quasi-Newton step for the I,-penalty function, p=f+3oc”¢, is a descent direction
for p if the null space portion of the Hessian approximation is positive definite
(Fenyes, 1987).

Given this motivation, how do we maintain positivity? In unconstrained quasi-
Newton methods, we can maintain a positive definite Hessian approximation when
far from the solution by using a line-search procedure. For example, by requiring
the line-search to satisfy the Goldstein-Armijo criteria (Goldstein, 1967; Armijo,
1966)

f+$f+,BlgT(x+"x)a gI(x+_x)2'Bng(x+"x), (2.5)

with 0 <, <B,<1, we can guarantee the existence of a positive definite update at
each iteration — even far from the solution. In the constrained case, however, if
we update using a step in the full space it is nearly impossible to guarantee positivity
of the nullspace Hessian approximation by a simple line-search procedure.

To handle this, two basic quasi-Newton approaches for constrained problems
have emerged. The earliest methods approximated the full Hessian matrix.
Schittkowski (1984) and Tapia (1978) compared most of the existing algorithms,
and showed that many are equivalent in the equality constrained case. Hestenes
(1969), Murray (1969), Biggs (1972, 1975), Garcia et al. (1976), Han (1976), Tapia
(1977), Glad (1979), Schittkowski (1981), Mayne and Polak (1982), Gill et al. (1985,
1986), and Powell and Yuan (1986) approximated the full Hessian of either the
Lagrangian or the augmented Lagrangian. These methods have several drawbacks.
First, they require the storage of the full nxn Hessian matrix though we need at
most an (n—m) X n submatrix to solve for the step from x to x.. Second, none of
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these methods can reliably assure that the Hessian approximation will remain well
conditioned and positive definite at each iteration — even near the solution. In part,
this may be due to incompatibilities between our chosen merit function and the
function whose Hessian we are approximating (Boggs and Tolle, 1987). Powell
(1978a) overcame this difficulty by introducing a modified BFGS formula which
keeps the entire Hessian approximation positive definite. Unfortunately Powell’s
modification may generate very ill-conditioned updates (Powell, 1985).

Projected methods first suggested by Wright (1976) and Murray and Wright (1978),
and more recently by Tanabe (1981), Womersley and Fletcher (1982), Gabay (1982),
Coleman and Conn (1984), Nocedal and Overton (1985) and Gurwitz (1986),
approximate the projected Hessian Z'V°LZ, and either approximate the quantity
Z"V2LYsy by finite differences or ignore it. Consequently, we solve smaller (n —m) X
(n—m) systems and never store or project the full Hessian matrix. Since the matrix
Z"V2LZ is assumed positive definite in a neighborhood of the solution these
approaches attempt to maintain positivity of the null-space approximation near the
solution without introducing a penalty parameter. However, some difficulties remain.

In the methods of Womersley and Fletcher (1982) and Gabay (1982), projections
of the full-step quantities

s=Z"(x,—x), y=2Z"(VL(x,)—VL(x)), (2.6)

are used to update an approximation to Z' V>LZ. Since this choice can not guarantee
s'y>0 they use Powell’s modified BFGS update to keep the reduced Hessian
approximation positive definite. As noted by Nocedal and Overton (1985), this
modification may lead to ill-conditioned updates if s'y>s"Bs even when B
approximates the reduced Hessian.

The projected methods of Coleman and Conn (1984) and Fontecilla (1988) have
no penalty parameters or modified updates. They maintain Bzz>0 by evaluating
one extra gradient, VL(x+ h), per iteration. Using the projected quantities 5=
Z"(x,—x), y=Z"(VL(x+h)—VL(x)) and the quasi-Newton equation B,s, =
ZT(VL(x+h)—VL(x)), they compute either a BFGS or DFP update. This choice
insures that s’y >0 for x near x* so that B, will remain positive definite near the
solution. Unfortunately, when far from the solution, even this approach can not
guarantee positivity.

Nocedal and Overton (1985) use the projected full-step quantities (2.6). They
guarantee positivity of the null space portion of the Hessian by updating at iteration
k only when

n

vl <=z ll Al
” k” (k+1)1+4) ” k”

Here, 7 and ¢ are arbitrary parameters which must be properly selected for good
performance. They prove that this restriction guarantees sTy>0 in a region very
near x*. However, their result assures frequent updating only very near the solution
and may have limited practical computational value.




24 T.F. Coleman, P.A. Fenyes / Partitioned quasi-Newton methods

3. Derivation of new quasi-Newton updates for constrained optimization using a
variational approach

Let us now consider approximating the transformed Hessian matrix (1.6), while
maintaining positivity of the null-space approximation, a least change condition,
and the transformed quasi-Newton equation Q"(B,)QQ"s = Q"y, or in partitioned

form
IZB;Y BT’Z]<SY> Z(J’Y>ﬁ(YT(VL(x'*’S)“‘VL(x))) (3.1)
B}Y Bzz Sz Yz ZT(VL(X+S)“VL(X)) ' .
Note that y=VL(x+s)+VL(x) requires gradient information only at x and x, =
x+ s — no extra midpoint gradient evaluations are required.

3.1. The lower partition BFGS update

Since the matrices Y'V’LY and Y'V2LZ are required only to solve for the new
Lagrangian multipliers, if we obtain the multipliers by a least squares estimate we
need approximate only the terms Z'V’LY and Z'V’LZ, the lower half of the
partitioned Hessian matrix (1.6). We will approximate Z"V*LZ by a positive definite,
symmetric matrix Bz, and Z'V’LY by a matrix By and require that B%, and B>,
satisfy only the lower half of the quasi-Newton equation (3.1),

[BZY B;z]<sy) =)z (3.2)

Sz

As in Dennis and Schnabel’s (1979) derivation for unconstrained updates, we assume
B, is positive definite and symmetric with a Cholesky decomposition B, = LL",
and then define

By, =(L+E)(L+E) =J,J%, (3.3)
B;Y'—'__ BZY+ Ha (3'4)

where HeR"™ "' EeR""=*"=1_ Substituting these expressions into the quasi-
Newton condition, (3.2), and rearranging, we obtain

[H (L+ E)(L"‘E)T](SY) =Yz~ Bzysy =1,

Sz

where r, €eR"™". Defining w=(L+E)"s,,we R our complete variational
formulation is to choose H and E in order to

minhimize IH  E]|l
e

subjectto [H (L+ E)](f:) =r,. (3.5)
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Thus, we have an equality constrained QP in the variables h; and e;, the entries of
H and E.
Applying the first order optimality conditions to this QP, we determine

H=us, (3.6)

and E = uw” where ueR""™" is the vector of Lagrange multipliers. Substituting E
into the definition of w we get w=L"s,/(1—s,u) and thus

usyL

E= .

1—syu (3.7)
Substituting H and E from (3.6) and (3.7) into the quasi-Newton equation (3.5),
noting Bzz= LL" and defining a =1/(1—u"s,) we may write u as a function of
the unknown scalar «,

rz — aBZZSZ

u= | (3.8)

- T 2. T .
SySY+a SzBZZsZ

Using this expression for u we form @ =1/(1—u"s;) and, noting that s} Bz,s, >0,
collect terms in « to obtain the cubic equation

(SI/SY "S}rz) _ 51)-'5)/

3
a ta T T
5zBzz5s7 SzBz757

=0. (3.9)

Thus, given a solution for this cubic in a, we can determine u, H and E from
equations (3.8), (3.6) and (3.7).

In a variational derivation of the standard BFGS formula, a must solve a®—
(sTy/s"Bs) =0, making necessary the familiar condition s’y >0 in order to insure
a well-defined update. In contrast, since equation (3.9) is a cubic, it always has at
least one real root. Thus, it seems, we are guaranteed that a, u, H and E will be
well defined under all circumstances. The next theorem shows that this generally
holds for the Lower Partition BFGS Update (LPB). However, as discussed below,
special circumstances require a more detailed analysis of the cubic root, a.

Theorem 3.1. If sy #0, s; #0, and B,, = LL" is positive definite, then the updated
matrices B,y and B, given by equations (3.3), (3.4) and (3.6)-(3.9) are well defined
and satisfy the quasi-Newton equation (3.2). In addition, B}, is positive definite and
symmetric.

Proof. By, and B, are well defined, since a real solution to the cubic equation
(3.9) always exists under the stated assumptions. By definition, they clearly satisfy
the quasi-Newton equation (3.2) and insure symmetry of B .

To see that B, =J,.J1 is positive definite we must show that J1=LT+E"=
L™(I +aszu") is nonsingular. Since L is nonsingular, we consider the matrix I+
as,u'. By the Sherman-Morrison-Woodbury formula this is nonsingular if and
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only if o #0, where

syu 1
o=1+ —= T=a.
1—szu 1—-s5zu

But, clearly, @ # 0 since @ =0 is a real root of

3 (SIKSY_S}”Z)_ Sy Sy

T T
SzBzz57 5zBzzs;

a =0.
if and only if sy = 0. Since sy # 0, s, # 0 and B, is positive definite by assumption,
the cubic is well defined and a # 0. Thus, we have o # 0 and J is nonsingular. [J

Before we continue with two special cases, let us rewrite the update of B,, in a
form resembling the standard BFGS update. We can show

T T pT
)44 Bz75757B 77
Bzz=Bzz+ T.

T T
P Sz szBzz5;

(3.10)

where

2T
B
p=01—=0)aBz;s,+0ry, p's;=a’s;By;s;, 6= Q@ SzDBzzS8z

. (3.1
S’§/Sy+a2s1Z-Bzst ( )
In the special case sy =0, we find the cubic degenerates to a ““quadratic” equation
and a=(sLyz/syBzzsz)"? In addition, =1, and p=y, which leads to the
following corollary showing the LPB is naturally equivalent to a projected BFGS
update of the matrix Bz, which is well defined if sy, > 0.

Corollary 3.2. Assume sy =0 and syrz =syyz >0 which implies s, #0. As before,
assume By, = LL" is positive definite. Then the updated matrices B, and B, given
by equations (3.3), (3.4) and (3.6)-(3.9) are well defined and satisfy the quasi-Newton
equation (3.2). In addition, B%y = B,y , and B is given by the projected BFGS update

T
BL,=B, +yZyZ_BZZsZS}B12-Z
zz=DzzT T .

T
§SzYz 5zBz757

(3.12)

which is symmetric and positive definite. [J

We state, without proof, the next corollary which shows that new information
may be incorporated into the Hessian approximation even when sz =0.

Corollary 3.3. If s; =0 and s, #0 then B, = B,,. Furthermore, By, given by the
projected Broyden update

(yz— BZYSY)S1;/

SySy

Bzy=Bzy+ ’ (3.13)

is well defined and satisfies the quasi-Newton equation. []
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For some algorithms, (e.g. transformation methods based on the I,-penalty func-
tion), we may wish to approximate all four projections of the Hessian matrix. It is
possible to use the LPB in a two-state updating procedure to approximate Y'V2LY
and Y'V2LZ in addition to Z"V?LZ and Z"V’LY. Details of this update may be
found in Coleman and Fenyes (1988). However, in the next section we define a
new update formula which simultaneously updates the full partitioned Hessian
matrix.

3.2. The full partition BFGS update

Returning to the partitioned form of NEP, consider approximating of all four
matrices YTV2LY, Y'V’LZ, Z"V2LY and Z"V?LZ. Again, approximate Z'V’LZ
by a positive definite, symmetric matrix Bzz. To maintain symmetry, we require
B,y symmetric and By, =BJy. We also require that B}y, B%V,, By and B,
satisfy the full projected quasi-Newton equation (3.1). Again, assume the current
approximation Bz; = LL" is positive definite and symmetric and then define

B,=(L+E)(L+E)"=J.J3, (3.14)
Biy=Bzy+H=Byz, (3.15)
Byy =By, +(G+G"). (3.16)

Defining w=(L+E)"sz, weR" ™", and assuming L+ E nonsingular, the quasi-
Newton condition, (3.1), may be written

S
[(G+GT) HT 0 ] SY _ (yY _BYYSY_BYZSZ> i("'y) (3 17)
H 0 (L+E) ; Yz = Bzysy . ’

rz

where ry € R' and r, e R""~". The variational formulation is completed by choosing
G, H and E to

1 2

minimize =
g.h,e 2

‘[(G+GT) HT]
H E

F

subject to the quasi-Newton condition (3.17).
Forming the Lagrangian in the variables g;;, h; and e; and two Lagrange multipliers

uy €R' and uy e R"™", differentiating, and applying the first order conditions, we
obtain

G+G " =uysy+syuy, (3.18)
H= uzsf/+szu{/,
E =2u,w". (3.19)
Using E in the definition of w we get w=L"s,/(1~2s7u) and
2uysyL
Zm. (3.20)



28 T.F. Coleman, P.A. Fenyes | Partitioned quasi-Newton methods

Substituting H, G+ GT and E from (3.18), (3.19) and (3.20) into the quasi-Newton
equation (3.17) yields expressions for uy and u, in terms of the unknown scalars
ubs, and uysy;

ry _SY(V{'SY’*' ”;Sz)

Uy = STS B (321)

T
Yz —SzUySy — aBzz.gZ

Uy =

> (3.22)

2.T
SI’SY +2a S2322SZ

where s's=s)sy+s2s, and a =1/(1—2s5u,). Multiplying (3.21) by s3 we solve
for ul sy =1 as a function of uys,,

T T T
Syry—sYSyust

y=uysy = (3.23)

=
SySy + s's

Substituting y into (3.22), multiplying both sides by —2s%, adding 1 to both sides
and simplifying, gives the cubic

a’+an—v=0 (3.24)
where o =1/(1—2s%u_) and

. S{/SY(SI/SY “25}72)‘*' SESZ(S—{”'Y ~5217)

SyByy57(svsy+5's)

(51}-'5)/)2

Ij=
T T T
SszZSZ(SYSY +s S)

b

Given a solution for this cubic, we can compute us, from a and then vy, uy, u,, G+
G', H and E from equations (3.23), (3.21), (3.22), (3.18)-(3.20).

As we found for the LPB, this cubic will have at least one real root when s, # 0.
Carrying out an analysis similar to that for the LPB yields an analog of Theorem
3.1 showing the Full Partition BFGS Update (FPB) is well defined when s, # 0 and
sz #0. The proof follows that of Theorem 3.1 and is omitted.

Theorem 3.4. If sy #0, s, #0 and B,, = LL" is positive definite, then the updated
matrices Byy, Byz, By, and B, given by equations (3.14)-(3.16), and (3.18)-
(3.24) are well defined and satisfy the quasi-Newton equation (3.17). In addition, B},

is positive definite and symmetric. [

Analogs of Corollaries 3.2 and 3.3 show the FPB is naturally equivalent to projected
versions of standard updates when either sy =0 or s, =0.

Corollary 3.5. Assumenowsy, =0andsyr, =s%y, >0 which implies s, # 0. As before,

also assume B, = LL" is positive definite. Then the updated matrices By, By,
p p >

B}y, and B, given by equations (3.14)-(3.16) and (3.18)-(3.24) are well defined
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and satisfy the full quasi-Newton equation (3.1). In addition, Byy = By, and B}, =
B35 is given by the projected Broyden formula

(yY - BYZSZ)S}
S25z '

B_;Z = Byz+

Furthermore, B, given by the projected BFGS formula (3.12), is symmetric and
positive definite. []

Corollary 3.6. If s; =0 and sy #0 then the updated matrices are well defined and
satisfy the full quasi-Newton equation. In addition, B;, = Bz, and B3y, = B} is
given by the projected Broyden formula, (3.13) while By is given by the projected PSB,

(yy— BYYSY)S-{/‘l" Sy (yy — BYYSY)T_ s{,( Yy — BYYSY)SYSI/
S’]}-/Sy (s’;-’SY)2

O

_;/Y = Byy+

Again, BZ, may be written in the standard form (3.10) where « is given by (3.24)
and

p= (1—0)aBzzsz +0(rz —vsz), stZ = 0125}32252,

ZCKZSEBZZSZ

6= Z .
S’]}-/Sy +2a2SZBZZSZ

4. Analysis of the cubic equations in the LPB and FPB

The cubic equations (3.9) and (3.24) must be solved to compute either the LPB or
FPB update. In the standard form,

c(a)=a’+ma’+na+y,
we have for the FPB:
(c-FPB) 7 =0,

_ sySy(sysy —2szrz)+szsz(syry —szrz)

b

SEBZZsz(S'I}‘/SY + STS)
_ (S1‘;’SY)2
syBrrsy(svsy+sTs)’

and for the LPB:

V:

(c-LPB) w=0,
T T
n= (sySy —5zrz)
=
5zBz757
S{/SY
vV=——FT—""T"
T 5
5zBz757

. T . T T
with s s=5ySy +525.
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The analytical solution (Abramowitz and Stegun, 1964) yields the three roots

a,=A+B, a,=-3A+B)+3-3(A-B),

;= —HA+B)~1V=3 (A-B), (4-1)
where

A, B=[~1v+(0)"]" (42)
and

Y R . 43)

The number of real roots can be determined from the sign of w as follows:
w>0 => 1realroot,2 complex conjugate roots,
w=0 = 3realroots, at least 2 equal,
w <0 => 3realdistinct roots.

Note that the cubic always has at least one real root, guaranteeing existence of
the new updates in all cases. Although the formulas above may be used directly,
we used safeguarded formulas and iterative improvement (Fenyes, 1987) to
accurately evaluate the cubic roots.

4.1. Root selection and rejection

When three real roots are available, one must be selected to define the update. As
shown in Coleman and Fenyes (1988), the three real cubic roots obtained when
o <0 may be written

a,=2Re(A), a,=-Re(A)—v3Im(A), a;=-Re(A)+v3Im(A),

In general, these roots are well behaved. As discussed, when sy, = 0 the cubic updates
reduce to the standard projected BFGS update for B, . Thus, as s, - 0 it is important
that the selected root smoothly reduces the LPB and FPB to the standard projected
formula. Specifically, as shown in Coleman and Fenyes (1988), this can be achieved
by selecting either a, or a; which smoothly approach the roots agpgs=
+(sLyz/syBzzs7)"? for the standard projected BFGS update. We reject a; which
approaches the unusable root, zero. Unlike the standard BFGS update, the roots
a, and a; do not give the same update. Also, there is no apparent theoretical
justification for selecting one root over the other. After extensive experimentation
the following selection rule was adopted. First, since we wish the roots to be near
the standard BFGS roots, when the quantity s, r; is positive and sy is small relative
to s, we select the root whose absolute value is nearest to +(s%r,/syBz5-)"?. We
consider sy small relative to s, when |v/n|<0.10 since the Taylor expansions given
in Coleman and Fenyes (1988) indicate that the cubic roots will be near the roots
agrgs in this case. In all other cases, we use the same rule used in the standard
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BFGS update: choose the root which makes ||E ||, = ||u|.||w]|. as small as possible.
Here, Wi pB, WEPB = aLTSZ and

rz "’CYBZZsZ

U = T 2.T
SySY+a SzBZZsZ’

2(rz —aBzzs; — vsz) _SIf”Y“S-\r/SY(a_l)/za

b

Uppg =

T 2. T T
Sysy+2a SzB22SZ Sysy+STS

When w =0, all three roots approach zero. This corresponds directly to failure
of the standard BFGS update when s’y =0. A similar situation exists when s, =0
and w > 0. In this case, the cubic generates only one real root which approaches
zero, and two complex roots corresponding to the roots obtained in the standard
BFGS when s'y<0. Updating with a root near zero generally results in an ill-
conditioned update to Bz, and must be avoided. To see this, we note that (3.10)
yields sy B, = a’s; Bzzs, which implies that as @ > 0, BZ, approaches singularity.
To avoid ill-conditioning, it may be necessary to reject the cubic roots near zero
and skip the update. Fortunately we can predict this situation by estimating the
condition number of the new matrix B, before updating. Defining the condition
number of a symmetric matrix A as K(A) = A,.x/ Amin, W€ €stimate A, and A,
the largest and smallest eigenvalues of A which satisfy the relations max(A | Ax = Ax,
x| =1) and min(A|Ax=Ax, |x|=1) respectively. Thus, for all x we have
xTAX/xTX < Amax and x" Ax/x"x= Ayin.

Consider the eigenvalues of B%,. For small e, A,,;, may be closely approximated
by

T p+ 2.T
v ;SszzSz_a 5zBzzsz

in = = = Apin.
™ szl Isz* -

Also, using B, = LDLT and the definition of A,,,, we have for all X,
x'Bzzx 1
x'x x|

)\max = ”B;Z” =

T T

B,,s;szB

sz<LDLT+ Pf _ zgrzz ZZ)x,
P sz 5zBzzsz

and thus, for the best estimate, we seek x to maximize the right hand side. If d; is

the largest entry in the diagonal matrix D, we can estimate the desired x by L;:

column i of the matrix L. Thus, an estimate of the largest eigenvalue of B% is given

by

T T
PP~ Bzz5757Bz
T T
P sz SzBzz57

1
Ao iﬂl—”—i 11,.(LDLT+ ) Li< Ao

Now, define K as an estimate of the condition number,

- A Am:
K = ~max = max = K B+ .
)\min /\min ( ZZ)

Since we are most concerned about the case a >0 and B>, nearly singular, the
estimate of A, is the most important component of the condition number estimate.
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Fortunately the estimate of A, will be fairly accurate when BZ is almost singular,
since the singularity occurs in a direction nearly parallel to s,. This can easily be
seen by considering (3.10) which yields B;s,=p. Since p>0 as a—0, B},
approaches singularity in the direction s.

A more accurate condition number estimate may be obtained after updating by
using the LINPACK (Dongarra et al., 1979) algorithm DCHCO or equivalent. Of
course, this requires extra storage and computation. However, to confirm that K is
a reasonable estimate, it was compared to the condition number estimate computed
by DCHCO. At all iterations, our estimate K was found to be within an order of
magnitude of the estimate obtained from the Cholesky decomposition. We concluded
that K was a simple and effective predictor of ill-conditioning for our numerical
experiments. Other predictors have been used to avoid ill-conditioned approxi-
mations. For example, Gurwitz (1986) presented a simple post-update strategy which
uses the diagonal terms of the updated Cholesky decomposition to estimate the
condition number. Condition number estimates could also be used with Powell’s
modified BFGS to avoid ill-conditioning, however, this was not considered in our
current study.

5. Computational testing

The LPB and FPB formulas were tested in two algorithms based on the projected
form of the SQP step. They were compared with a standard projected-BFGS update
formula used in nonlinearly constrained optimization (Coleman and Conn, 1984).
These updates approximate only the null-space projection of the full Hessian matrix
using an extra midpoint gradient evaluation to compute y, the change in projected
gradients due to the step in the null space. Letting B, represent the current
approximation to the null-space projection of the Hessian, we define the BFGS-PM
(Projected Midpoint) update by

(BFGS-PM) s,=Z"(h+v)=2Z"h,
y,=Z"(VL(x+h+v)—VL(x+v)),

T T
YzYz Bzz5z57Bz7
B ;z =B, + T -

=
§zYz SzBzzs7

b

where, again, h is a step in the null space and v is a step in the range space.
Differencing VL along h to compute y, guarantees sy, >0 in a neighbourhood
of the solution and also yields more accurate Hessian approximations. Since
this update performs well near x*, we use it as a standard to measure the new
updates. To maintain positivity, we skipped the BFGS-PM update when s}y, <

Emacnll szl 1yz]-
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5.1. Two algorithms for testing the LPB and FPB updates

The two algorithms shown below differ mainly in two features: the definition of the
null-space step h = Zs; and the use of a globalization procedure. Although both
algorithms use the least squares multiplier estimate A“S, the local algorithm uses
the modified SQP x-step (2.4) without line search or trust region. The semi-global
algorithm uses the full SQP x-step (1.7) and a line search-based on the augmented
Lagrangian merit function

La(x, A", o) =f(x) = c(x)"AS +1oc(x) Te(x)

to insure that the Goldstein-Armijo (2.5) conditions are satisfied at each iteration.
Thus,

La(xk+1 s Allzsa U) < La(xk, Alk‘sa 0')

for each iteration when o is sufficiently large. However, this approach can not
guarantee global convergence. Since A"® is recomputed at the end of each iteration,
we can not guarantee

La(xk+l s Akil s 0-) < La(xk+1 s Allzsa 0.)

and thus L, may not decrease. Near the solution, however, the multipliers will
change very little and we can anticipate a monotonic decrease of the augmented
Lagrangian. In the semi-global algorithm, M, is a factor greater than unity, e.g.,
M, =10.

Semi-global algorithm.
Initialize:
k< 0.
Choose o, M,,, xo, BS.y, BS2, B%y, B%,.
Evaluate f;, g¢, ¢y, Ao-
Factor Ao=[Y, Z,J[Rg 01"
Evaluate A55=Ry'g%, La(x,, ALS, o).
Do while (||g% ]| > £qop 0r [l el > £40p)

U < YksI;’ =-YiR ;Tck >
hy < ZkS§ = —Zk(B.kzz)—](gE + Bgysl;/);
s < hye + .
Do while ((VLY) s, =0)
og<oM,.
End

Call LINESEARCH(o, 7, X, s¢, L5).
Xi+1€ X+ TSk
Evaluate fi.1, c+15 Chr1, Akrr-
Factor Ay =[Yis: Zil[Risy 0717
Evaluate A3, L.(xciq, ALS,, o).
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Bk+] <« U(Bka Xk s Uk, hl\)’
k< k+1.
End

Note that the local approach has no linesearch and uses a modified h-step which
ignores the change in gradients due to the step v = Ys,.

Local algorithm.
Initialize:

k<0.

Choose x,, By, BS,, B%,, B%,.

Evaluate f,, g4, Co, Ao.

Factor Ao=[Y, Z,J[R; 0"]".

Evaluate A§°=R;'g%.

Do while ([|g%[|> &qop 01 [ | > £0i0p)
Uy < Yksl;f =- YkR;Tck 5
hy < sté = —Zk(Bkéz)_lgké >
S < h + o
Xje+1 € Xp T Sk
Evaluate fii1, 8+1, Cks1> Akt -
Factor Ay, =[ Y4 Zk+1][RI+1 OT]T-
Evaluate AL3,.
B**'« U(B*, xi, v, hy);
k<k+1.

End

The formulas presented in Section 3 are used to define either the LPB or FPB
update after solving the appropriate cubic equation and selecting a root. The Hessian
approximations are stored in projected form. In all cases, we update the Cholesky
factorization of B, = LDL" using Gill et al.’s (1974) method. The LPB and FPB
updates were skipped if the condition number estimate for B, IZ, exceeded 10°.
When it was necessary to skip the FPB, we updated using the Modified FPB (MFPB),

(MFPB) B;Y =Byy+(G+ GT) = Byy+ uYS.])‘/+ SY“I@
;zz BYZ+HT= BYZ+uYs}: Bﬁzﬁu
where

T
do = 'y —SyY y= Syly

S S =5 o
SySy+SZsZ’ SySy+S N

This update leaves Bz, unchanged, updating only the blocks By, By, and B,y
while maintaining the quasi-Newton condition for only the upper half of the
partitioned matrix. Specifically, it solves the variational problem

FG+GU HT

2

minimize 3
g h

H 0

F
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subject to the quasi-Newton condition

[(G+G") H'] <:;> =Yy —ByySy =Byzsz =ry.
When using the LPB and FPB, the matrix By is readily available to compute the
horizontal step h=—Z(Bzz) (g2 + Bzysy). However, when using the BFGS-PM
update we must approximate the term By sy. Since the extra gradient VL(x+ Ysy)
is required to compute the BFGS-PM update we also use it to approximate the
vector Byysy with ZT(VL(x+ Ysy)—VL(x)). For the LPB and FPB we initialize
BY%, < 0 and B%, < 0. The initial approximation B%y < I,., is used for the FPB. For
most of the testing the first step is computed using B%2 < Iii_)x(n_r)- When using
B%, =1 and B%, =1 we obtain better estimates of B, and By, by scaling the
identity matrices at the end of the first iteration, before the first update. Consider
scaling B%, =py,I and B%, =p,,I. Since Y'V’LZ and Z'V’LY are non-zero they

satisfy
Y'™WVALY Y'VPLZ|/(sy Yy R
Ty2 Ty2 = +O(|s]I*)
Z'V'LY Z'V°LZ J\s, Yz
where yy and y are projections of the gradient change VL(x+ Ysy +Zs;) —V L(x).
Using an extra gradient evaluation at the point x,+ Ys, we define
Yy = YT(VL(XO+ Ysy)—VL(x,)),
y—Z = ZT(VL(x0+ YSY + ZSZ) —-VL(x0+ YSY)),
and approximate
Y'V2LYsy =yy — Y'V’LZs, =y, Z'VLZs, =y, —Z'V’LYsy =j,.

Approximating Y'V?LY and Z'V’LZ by BYy and B% in the directions sy and
sz yields

T 50 . T . _ T- T 50 _ T  _|.T=
SyByySy =puSySy =Sy)Vy, SszzSz—PzzszSz—Isz}’z

b

to give py =Sy JPy/sySy and py,=|s27,|/szs,. When using the BFGS-PM update,
the extra gradient at x + Ysy is already available since it is required to compute the
update. For the LPB and FPB algorithms, the extra gradient for the initial scaling
increases the total number of gradient evaluations by one. Because the additional
work is small, this improved scaling was implemented in both the semi-global and
local algorithms.

Finally, the line-search procedure used in the semi-global algorithm was a test
version of the routine CVSRCH supplied by J.J. Moré at Argonne National Labora-
tory. CVSRCH uses a combination of a cubic and a quadratic fit to find the
safeguarded step which satisfies the sufficient decrease and curvature conditions of
the Goldstein-Armijo (2.5) criteria.
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5.2. Test problems

The problems briefly described in Table 5.1 were used to test the new updates in
both the local and semi-global algorithms. Detailed descriptions of these problems
may be found in Fenyes (1987) or in earlier sources. The first four problems were
taken from Nocedal and Overton (1985). The next three are from Wright (1976)
and Rosen and Suzuki (1965), and the problems labeled HSxx are from Hock and
Schittkowski (1981). Here, N is the number of variables and T the number of
constraints. “Objective” and “Constraints” briefly describe the functions using
POLY O(n) to represent a polynomial of order n and EXP and TRIG to represent
expontial and trigonometric functions respectively.

5.3. Comparison with Nocedal and Overton’s method

Nocedal and Overton’s (1985) local algorithm C7 uses the same step s and gradient
change y as our local algorithm given above. They use a projected BFGS update
formula, updating only if the step satisfies

n

o < e

17

where they take ¢ =0.01 and n = 1.0. Although Nocedal and Overton’s results are
quite local, we felt it would be informative to compare our results with theirs. We
selected five of their test problems P1, P2, P3, P4 and problem 100 from Hock and
Schittkowski. In the listing above, these are referred to as problems NO1, NO2,

Table 5.1

Test problems

Problem N T Objective Constraints
NO1 2 1 POLY O(3) POLY O(2)
NO2 3 2 POLY O(2) POLY O(2)
NO3 5 3 EXP+POLY O(6) POLY O(3)
NO4 5 3 POLY O(4) POLY O(3)
Wright 8 9 6 POLY 0O(2) POLY O(2)
Wright 9 5 2 TRIG+POLY O(9) POLY O(3)
RS 4 2 POLY O(2) POLY O(2)
HS27 3 1 POLY O(4) POLY O(2)
HS53 5 3 POLY 0O(2) POLY O(1)
HS60 3 1 POLY O(4) POLY O(4)
HS61 3 2 POLY O(2) POLY O(2)
HS77 5 2 POLY O(6) TRIG+ POLY O(6)
HS78 5 3 POLY O(5) POLY O(3)
HS79 5 3 POLY O(4) POLY O(3)
HS100 7 2 POLY O(6) POLY O(4)
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NO3, NO4 and HS100 respectively. Using Nocedal and Overton’s starting points,
we ran the local algorithm above, updating with the LPB, the FPB, and the BFGS-PM
update. Like Nocedal and Overton, we initialize the LPB, FPB and BFGS-PM
methods by setting B to a finite difference estimate of Z"V>LZ. We insure positivity
of this initial approximation by factoring it with the modified Cholesky decompo-
sition of Gill and Murray (1974). For the LPB and FPB we set BS, = B%, =0 and
B%, = I. The matrices Byy, By, and B, are not used in the BFGS-PM method.
For this test we set &g, =107,

The results are shown in Table 5.2 where the BFGS-PM and Nocedal and Overton
methods are listed as BFGS and NO/C7 respectively. The columns labels are:

NIT: Number of iterations.

NGD: Number of times the gradients were evaluated.

NUS: Number of times the update was skipped.

NSY: Number of times s’y <0.

NT1: Number of times the Nocedal and Overton test failed with » =1.0.

NT2: Number of times the Nocedal and Overton test failed with » =2.0.

NT3: Number of times the Nocedal and Overton test failed with n =0.1.

The count NGD does not include the gradients required to obtain the initial finite
difference approximation of B, . Also, since an extra gradient is required to check

Table 5.2

Local algorithm: B,, by finite difference

Problem Update NIT NGD NUS NSY NT1 NT2 NT3
NO1 LPB 5 6 0 0 1 0 4
FPB 6 7 0 0 1 0 4
BFGS 5 11 0 0 1 0 4
NO/C7 5 6 1 - 1 - -
NO2 LPB 6 7 0 1 2 2 4
FPB 6 7 0 1 3 2 4
BFGS 5 11 0 0 3 2 4
NO/C7 6 7 3 - 3 - -
NO3 LPB 5 6 0 0 3 2 3
FPB 6 7 0 0 3 1 4
BFGS 4 9 0 0 2 1 2
NO/C7 5 6 1 - 1 - -
NO4 LPB 9 10 0 0 0 0 4
FPB 10 11 0 0 1 0 5
BFGS 8 17 0 0 1 0 5
NO/C7 8 9 0 - 0 - -
HS100 LPB 11 12 0 0 0 0 4
FPB 12 13 0 0 1 0 6
BFGS 11 23 0 0 1 0 5
NO/C7 12 13 0 - 0 - -
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convergence at the last iteration, NGD=2(NIT)+1 for the BFGS-PM, and NGD =
NIT+1 for all other methods.

All four updates achieve convergence in approximately the same number of
iterations. The BFGS-PM method requires slightly fewer iterations but, as we would
expect, this is achieved at the expense of nearly twice as many gradient evaluations.
It is also interesting to note that even though the starting points used were very
near the solutions, NO/C7 skips updates in three of the problems while the other
methods are able to update at every iteration. In problem NO?2, the algorithm
NO/C7 seems to perform well, although only two of the five possible updates are
performed. Skipping an update apparently has little effect in these problems because
the initial finite difference Hessian approximation is taken near the solution.

5.4. Further testing of the local and global algorithms

The results in Table 5.2 are based on single starting points quite near the solution.
Since the LPB and FPB were formulated to maintain a positive definite Hessian
approximation even far from the solution, additional testing was performed to study
the updates with a variety of starting points. A total of 540 starting points were
randomly selected: 36 starting points for each of the 15 problems listed above.
Twelve points were chosen from each of the full, range, or null spaces determined
at the solution: three starting points at each of the distances 0.01, 0.10, 1.00 and
5.00 from the solution. By considering many problems with many starting points
we obtain an unbiased view of the performance of the LPB, FPB, and the BFGS-PM
updates when used in either the local or semi-global algorithm. In all cases we
initialize Byy and Bz, to scaled identity matrices and set By, = B, =0. We note
that for the BFGS-PM update we must have s>y, >0 in order to update. For the
LPB and FPB it may still be possible to update even when s%y, <O0.

The detailed computational results presented in Fenyes (1987) are analyzed and
summarized here. The starting points were divided into two groups: NEAR for the
points at radius 0.01 and 0.10, and FAR for the points at radius 1.00 and 5.00. First,
we determined the number of iterations and gradient evaluations required for
convergence of each algorithm when using the BFGS-PM, LPB and FPB formulas
from each starting point. Using SAS (SAS Institute Inc., 1982) we analyzed our
results as discussed below.

The averages, grouped by starting distance from the solution, are shown in Figures
5.1 and 5.2 for the local and semi-global algorithms. They give a measure of the
relative efficiencies for each update formula, but do not indicate if the differences

are significant. To study these differences, we paired the tests by starting point and
averaged, within groups, the quantities

NIT,(UPDT;) — NIT,(UPDT),), NGD,(UPDT;) —NGD,(UPDT;). (5.1)

Here, NIT,(UPDT;) indicates the number of iterations required for convergence
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Fig. 5.2. Semi-global algorithm.

of update i from starting point k while i and j represent any of the BFGS-PM, LPB
or FPB formulas. The paired t-test was used to condense the voluminous information
and determine if the differences between updates were statistically significant. The
paired t-statistics are presented in Tables 5.3, 5.4 and 5.5. Averages of the differences
(5.1) are shown in the AVG columns. Under the null hypothesis that the means for
the three updates were equal, we computed the significance levels shown in the
column labelled SIG LVL for the alternate hypotheses NIT(UPDT;) < NIT(UPDT;)
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Table 5.3
Comparison with BFGS-PM: Iterations

Algorithm UPDT Points AVG(BFGS-UPDT) SIG LVL
Local LPB NEAR -0.86 0.00005
FAR +0.30 0.36970
FPB NEAR -1.09 0.00005
FAR +0.16 0.39890
S-Glo LPB NEAR -1.03 0.00005
FAR -1.65 0.00690
FPB NEAR —0.68 0.00005
FAR -1.65 0.00450
Table 5.4
Comparison with BFGS-PM: Gradients
Algorithm UPDT Points AVG(BFGS-UPDT) SIG LVL
Local LPB NEAR +5.57 0.00005
FAR +18.0 0.00005
FPB NEAR +5.33 0.00005
FAR +17.71 0.00005
S-Glo LPB NEAR +3.43 0.00005
FAR +13.11 0.00005
FPB NEAR +3.82 0.00005
FAR +12.95 0.00005
Table 5.5
Comparison between LPB and FPB
Algorithm Count Points AVG(LPB-FPB) SIG LVL
Local NIT NEAR -0.23 0.20385
FAR -0.25 0.32200
NGD NEAR -0.23 0.20385
FAR -0.25 0.32200
S-Glo NIT NEAR +0.35 0.00010
FAR —0.06 0.46125
NGD NEAR +0.39 0.16040
FAR -0.26 0.41480
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or, depending on the sign of the average difference, NIT(UPDT;) > NIT(UPDT)).
Here, we use the overbar to indicate an average. For values of SIG LVL less than
0.01 we concluded that the null hypothesis was false and that the two methods
were statistically different. In other words, for SIG LVL less than 0.01, when
AVG>0 (AVG<0) we could then conclude that NIT(UPDT;)> NIT(UPDT,)
(NIT(UPDT;) <N~I'_I'(UPDTJ-)). For SIG LVL greater than 0.01 we concluded that
the update methods were, on average, the same.

Let us first consider Table 5.3, which compares the number of iterations required
for convergence of the BFGS-PM with the LPB and FPB formulas.

We would expect the BFGS-PM to require fewer iterations for convergence, since
it uses the additional gradient information at the midpoints. However, Table 5.3
shows this advantage is small. For starting points near the solution, the BFGS-PM
formula has about a single iteration advantage over both the LPB and FPB formulas.
For starting points far from the solution, the slight advantage of the BFGS-PM
formula is maintained in the semi-global algorithm, but not for the local algorithm.
No statistically significant difference can be demonstrated for the BFGS-PM com-
pared to the LPB and FPB when using the local algorithm from starting points far
from the solution.

Table 5.4 compares the number of gradients required for convergence in the
BFGS-PM against the LPB and FPB. As we would expect, the BFGS-PM requires
many more gradient evaluations than either the LPB or FPB formulas and the
differences are statistically significant.

In fact, we could show, at a significance level of 0.01, that the BFGS-PM formula
requires more than 13 (8) extra gradients than the LPB or FPB when using the local
(semi-global) algorithm far from the solution.

In Table 5.5 we look for differences between the two new updates. The only
statistically significant difference is the lower iteration count for the FPB formula
when using the semi-global algorithm near the solution.

6. Discussion

It is clear that the LPB and the FPB formulas have several desirable algorithmic
features. Since no extra midpoint gradient evaluations are needed to insure positivity
of B,,, these updates are very efficient. In addition, there is no need to satisfy a
condition of the type sy >0 when s, #0 and s, #0, allowing us to update our
Hessian approximation at nearly every iteration, even when far from the solution.
Finally, Corollaries 3.2, 3.3, 3.5 and 3.6 show that the FPB and LPB formulas reduce
to projected forms of the Broyden, PSB and BFGS updates in the special cases
sy =0 or sz =0. This is a particularly nice property of the LPB and FPB formulas.

Theorems 3.1 and 3.4 show that these updates are well defined when both sy # 0
and s, # 0, and that the formulas will keep B, positive definite even when far from
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the solution. In some sense this is counter-intuitive. Suppose we have taken a step
which lies mostly in the null space, in other words s, =0, and we have sy, <O0.
In this situation the standard projected BFGS formula fails to keep B, positive
definite and it must therefore be skipped. In contrast, although we have seen no
positive curvature in the null space, we can still update with either the FPB or LPB
and maintain positivity of B;,. How can this be? Comparing the projected BFGS
formula with the FPB we can resolve this apparent paradox. First consider the
quasi-Newton equations for both formulas. For the standard BFGS we satisfy an
equation of the form B s, =y,. If s7y, =s3B%,s, <0 then clearly B}, is not
positive definite and the update can not be performed. However, for the FPB we
have the quasi-Newton equation B,s, =y, — B%ysy. Here, again, sy B%,s, must
be positive if B, is to be positive definite. But this implies 53y, — sy BLysy > 0.
In this case, when sy, <0 we can force sz B,s; >0 by choosing B}y to satisfy
syB%ys; <s.y,. In some sense, B, serves as an additional degree of freedom to
maintain the positivity of BZ,. Of course, only certain choices of B}, will minimize
the matrix norm and satisfy the quasi-Newton equation — these choices are deter-
mined by the roots, a, of the cubic equation. Even when s, =0 and sy, <0 this
additional freedom allows us to keep B, positive definite.

One desirable property of the BFGS and DFP updates is their invariance to
variable scalings of the type x = Dx where D is a diagonal scaling matrix. This
insures that a change of units or an arbitrary scaling of the variables will not affect
the updates or the algorithmic performance. The Broyden and PSB updates do not
have this scale invariance. Unfortunately, the LPB and FPB updates are not scale
invariant. However, the LPB update will be nearly scale invariant if s} sy is small
relative to s, B,,s,.

The numerical results of Section 5 are quite encouraging. The comparisons with
the method of Nocedal and Overton have shown that our update formula leads to
more frequent updates, even near the solution, and thus may be more practical.
Finally, the statistical analysis using a large number of starting points showed that
the FPB and LPB are quite competitive with the standard projected BFGS update.
The LPB and FPB converge in about the same number of iterations as the projected
BFGS, however they require significantly fewer gradient evaluations. In addition,
we have proven (Fenyes, 1987) R-superlinear convergence of a local algorithm
which uses the LPB formula with the SQP x-step (1.7) and the least-squares multiplier
estimates. This proof follows that used by Powell (1978b) to show R-superlinear
convergence of his modified BFGS update. Q-superlinear convergence is currently
under study.
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